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AIIItnct-A perturbation method is presented for the analysis of postbuckling behavior and imperf~ction

sensitivity of elastic structures which have more than one buckling mode. The method is exemplified by
analyzing a complete spherical abell under external hydrostatic pressure. For this analysis. use is made of
two- and three-mode models of the sheD derived earlier from the sballow shell equations.

I. INTRODUCTION

In recent years there has been some interest in the analysis of conservative elastic systems
whose loss of stability is associated with the existence of more than one buckling mode at the
lowest critical point on the fundamental path. Not only can the multiplicity of buckling modes
arise naturally in a problem, the coincidence of the two lowest buckling loads may sometimes
be used as the optimization criterion in structural design. Traditionally, the general procedure
for analyzing the imperfection sensitivity of such structures consists of two steps, as, for
example, in Hutchinson[l]. Firstly, a reduced set of equilibrium equations in terms of the
amplitude of the buckling modes is obtained by using the Koiter's method [2]. The equilibrium
path of the structure is then calculated by solving these nonlinear equations. Once the
equilibrium path is known it is a simple matter to calculate a limit point or a bifurcation point.

In the following presentation a somewhat different approach is used. Its distinguishing
feature is that the equations governing the equilibrium and the transition to instability are
solved simultaneously to obtain the critical load of the imperfect structure. Since it is usually
sufficient to calculate only the instability load for a given imperfection and the knowledge of the
equilibrium path of- the imperfect structure is not, in itself, very important, the present method
has an obvious advantage.

The notation used in the development is the one introduced by Koiter [2] because of its
compactness and applicability to both continuous and discrete systems. Even the reduced set of
equilibrium equations derived by Koiter's method can be effectively treated by using the
approach outlined here. In fact, the examples that have been chosen to illustrate the method­
two and three-mode models of externally pressurized spherical shells-are the results of
applying Koiter's method to the continuum problem.

For the sake of completeness a perturbation method to calculate the equilibrium paths of the
perfect structure is also presented. This formUlation is slightly different from.the ones currently
used, e.g. [3].

In the sequel it is constantly required to use the solvability conditions for a singular set of
equations. Let the set of equations

Pll(W, 8w) =0

have r nontrivial solutions "'i, i.e.

P lI(t/li, 8w) =0, i =1, ... , r.

Then the nonhomogeneous set of equations corresponding to (1.1),

P lI(Z, 8w) = R(8w)
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(1.1)

(1.2)

(1.3)
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has a solution if and only if
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R(4)/) =0, i =I, ... , r. (1.4)

Once the condition (1.4) is satiaied eqn (1.3) can be solved eitbel' by usiRa a aeneralized inverse
of a sinauJar matrix in C¥O of discrete systems or by the use of paeraIiIed Green's matrix for
continuum problems.

2. PERTURBATION METHOD FOR MULTIPLE
BIFURCATION·POSnUCICLlNG ANALYSIS

The equilibrium equations are assumed in the form

8P(u) =PII(u, 814) + (A - Ao)Pl!(u, 8u)+(A - AO)2Pfl(l., 814)' .. + P21(U, 814)

+(A -Ao)Ph(M, &1)+'" +P31(", &1)+.' . =O. (2.1)

It is assumed that there is a bifurcation point at load level Ao with r bifurcation modes,
orthonormalized with respect to a positive definite quadratic form. that is, with " denotina the
Kronecker delta.

(2.2)

The bifurcatiaa branches from load level Ao are expanded in the form

M = 'VI + .2V2 + .3V3 ••.• (2.3a)

A=Ao+dl +.2A2 •••• (2.3b)

with

,
VI-~ tJ1Plt (2.4&)

I-I
,
~ al-t, (2.4b)
I-I

TII(Vh vI) = 81/. (2.4c)

On substituting the expansion (2.3) into eqn (2.t) and equatina the same powers of E a
sequence of linear problems is obtained:

0(.) PII (± aIPI' 8") =0, (2.Sa)
I-I

0(,1) PII(Vz, &I) +AIPil(± a1PJ, &I) + P11(± a1Pf, 8M) =0, (2.Sb)
I-I /-1

0(.3) P II (V3, 814) + AI(Pil(vz, 811) + AIPfl(V., 8M)) + AzPia(v., 8M)

+ PI\I(V" V1, 814) +AIP 21(Vh 8u)+ P31(Vh 8u) =O. (2.5c)

The first of these is satisfied since /Pi's are the bifurcation modes. The condition that eqn
(2.5b) be solvable for V1 leads to a set of nonlinear algebraic equations

(2.6)

Defining the matrices

(2.7)
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r

2[Ml(aHjj =L a.PIII«pit (Ph (pj),
.=1

the eqn (2.6) can be written as

AIAa + Ml(a)a = 0,

with the constraint (2.4b)
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(2.8)

(2.9)

(2.10)

in terms of the vector a T with components (a" a2,' .. ,ar ). It is assumed that the matrix A is
nonsingular. In that case and if Ml(a) is not identically zero, the set (4.9H4.10) will have s
solutions denoted by

For each of these branches solution of eqn (2.5b) is of the form

r

1 - 1 +"" IIIV2 = V2 """ ,.,j (Pi>
i-I

where v,J is the unique solution of

Tll(ii,J,(pj)=O; j=I, ... ,r; 1=1•... ,s.

Using the condition (2.4c) with j = 2, one also gets

r

L /3lal =0.
i-I

(2.11)

(2.12)

(2.13a)

(2.13b)

(2.14)

Equation (2.12) is now substituted into the condition that eqn (2.5c) be solvable for V3 for each
of the branches. With the definition

1l E (A{ip~I(Vll, (Pi) +A/P21(V/, <Pj) +P31(V/, (pj)

+A..'P1.(V,J, (Pi) +PIII(VI1, V2, (Pi)'

.:;/- PlJ(v/, (pj).

this solvability condition becomes

(2.15a)

(2.l5b)

(2.16)

Equations (2.16) and (2.14) are (r+ 1) linear equation!'> for the r dimensional vector pi and
scalar A,J, thus

(2.17)

Similar linear equations are obtained in calculating higher order terms; thus it is required that
(r + 1) x (r + 1) matrix in eqn (2.17) be nonsingular.

This completes the basic procedure for the analysis of postbuckling behavior which could,
in principle, be carried to any order. If Ml(a) =O. eqn (2.9) yields Al = 0 and the vector a
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undetermined. However the third order equation yields a cubic set of equations of the form

AzAa +M2(a)a =0, (2.18&)

(2.18b)

Thus the analysis essentially involves solving a set of nonlinear algebraic equations for
obtainina the lowest order term in the perturbation expansion. This establishes the number of
branches passiq tbrou8h the bifurcation point One then proceeds along each of these branches
and only linear analysis is required for obtaining hiaher order terms.

3. PERTURBATION METHOD FOR MULTIPLE
BIFURCATION-IMPERFECTION SENSITIVITY

The system described by the equilibrium eqns (2.1) is now assumed to have an imperfection.
The equilibrium eqns (2.1) are thus modified to

8P(Il) = Pu(ll, 811) + (A - .\o>Ph(u. &I) + (A - .\e)zp1t(ll, 81l) + P2.(1l, 811) + (A - .\e)Pit(1l, &I)

+ Pu(ll, &I) + ,,[Q.(&I) + (A - .\e)QH8II) + Qu(u, 81l» =o. (3.1)

Rather than try to solve eqn (3.1) for each " and then obtain the instabi1ity loads-which is
the essence of Koiter's metbod-attention is restricted in the fo11owina to solve eqn (3.1)
simultaaeously with the fo11owiq eqn (3.2), which is the neoesaary COIIdi&ieR .. tile load level
A correspond to a critical point on the equilibrium path. Thus one has

82p(II) = Pu(~, &I) + (A - .\e)Ph(.. &I) + (A - Aoi1p1t(t,t, &I) + PII\(Il,~, 811)

+ (A - Ae)Piu(1l, t,t, 811) +P2U(u,"', 81l) +,,[Qu(" au)] =0,

TIl("" "') ~ o.

Solution of eqns (3.1), (3.2) is expanded in the form (see Appendix)

~=~+".+"',

A=Ao+eA\+"',

,,= e%"2+"',

where

(3.2a)

(3.2b)

(3.3)

(3.4)

Substitution of expansion (3.3) into the eqns (3.1), (3.2) leads to a sequence of linear
problems. As in the last section, the first one is identically satisfied for both eqns (3.1) and (3.2).
The second set is

PIl(V2. 81l) +A\Pi\(vh 8u) + P2\(Vh 8u)+ "zQ\(8u) =0,

PIl("'h 81l) + A\Pit(l/Io, 8u) + PII1(V\o "'0, 8u) =O.

(3.5a)

(3.5b)
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The condition that these must be solvable for V2 and 1/1, leads to a set of algebraic equations

(3.6a)

(3.6b)

where the representation (3.4a), (3.4b) has also been used. Using the matrix notation of the last
section, this set can be written in the convenient form

A,Aa +Ml(a)a + #A-2( =0; (I- QM'/),

A,A~+2Ml(a)~=O,

(3.7a)

(3.7b)

and from eqn (3.4), vectors a and ~, with components al and ~I respectively, also satisfy

(3.8a, b)

Being nonlinear, it is difticult to solve these equations directly for a given (. In the following
a method for obtaining these solutions is presented.

UsuaJly it is of importance to determine the worst case, i.e. for a given magnitude of the
vector (, the combination of the various components (I which produces the maximum
deterioration in the buckling load is required. Without any loss of generality the mapitude can
be taken to be unity. Thus defining a vector

(3.9&)

so that

(3.9b)

the eqn (3.7a) transforms to

(3.10)

The problems (3.7), (3.8) are now equivalent to eqns (3.7b), (3.8) and (3.10).
A class of solutions to this modified problem is at once obvious, thus (with subscript #A­

distinguishing the solution for the imperfect case from the perfect one):

AI.. =2A{.,

~l =a,/,

a,/=a,/,

r = - A{. Aa,/ (no sum).

(3.11a)

(3.11b)

(3.11c)

(3. 11d)

That these are indeed the solutions can be verified by direct substitution and using the fact
that the quantities AI. and ab

1 defined by eqn (2.11) satisfy the eqns (2.9).
Another way of generating the solutions is as follows: first a unit vector a =ti is assumed.

The vector ~ and A, can obtained by solving the eigenvalue problem

Ax + xM1(ci)x =0,

xTx = 1.

(3.12a)

(3.12b)

Since the matrices A and Ml(ci) are real and symmetric, the eigenvalues are real. Hence
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corresponding to this a, from eqns (3.7b) and (3.10), the solution is

A, =2Ix.

l=x.
l =- [AIAa +Ml(a)a].

(3. 13a)

(3.13b)

(3.13c)

ThUI, in principle, a contiauum of solutions can be generated aad from these the im­
perfection that leads to the maximum decrease in the bucldiDlload can be determiDed.

It must be empbasized here that the potential energy formulation has been used here only
for notational convenience-tbis pertUrbation method can be applied to all self adjoint boun­
dary value problems and with a slight modification (i.e. usios the null vector of the adjoint
problem in the solvability condition) to non-self adjoint problems also.

In case the matrix M1(a) is identically zero, this analysis yields AI = 11-2 = O. Hence biaher
order expansion bas to be used. This will yield equations of the form

A2Aa +M2(a)a +1I-3( = 0,

A2A1+3M2(a)l = O.

(3.14a)

(3.14b)

Apia. a procedure similar to the one described above can be used lor solution of these
equations.

For the subsequnt set of linear equatioaa for biIJbet order terms to be solvable a condition
analOIOus to eqn (2.17) bas to be satisfied. Such a condition caD be obtam.l by takiDa the
derivative of the left band side of eqns (3.7), (3.8) with respect to the quantities II, t, A and 11-2
and requirina that the matrix so obtained be nonsinaular. Thus the (2r +2) x (2r +2) matrix

[

AlA +2Ml(lI)
2Ml(t)

211 T

o

All
At
o
o

evaluated at the solution of eqns (3.7) and (3.8) must be nonsingular for the assumed
perturbation expansion to be valid.

4. AN EXAMPLE OF DEGENERATE BIFURCATION-THE
EXTERNALLY PRESSURIZED SPRIRICAL SHELL

To illustrate the use of the perturbadon method for case of depurate bifurcation. the
imperfection sensitivity of an externally pressurized shell bas been analyzed. The continuum
model-for example, the shallow sheD equations used by Hutchinson[l]-is characterized by
the existence of larae number of modes associated with the bifurcation point. The problem
becomes tractable if one imposes the requirement that only a finite number of modes participate
in the initial postbucklina repe. This could be done in a number of seeminalY different ways,
as in Hutchinson[l] or Reissner[4]. For the sake of brevity it is not attempted here to proceed
from the shallow sheD equations and solution is obtained uaios some results of Hutchinson
whose work can be referred to for details.

H a two-mode solution is assumed, the IOvernina equations in terms of noactimeasional
variables are

(4.la)

(4.tb)

where IT = (j,,!2) is a unit vector. The quantities A and D are defined in terms of critical
pressure Pc and Poissons ratio 1', thus,

(4.2a)
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The bifurcation point is at Ao=1 with the corresponding bifurcation modes

fP? = [1,0]; fP2T = [0,1].
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(4.2b)

(4.3a, b)

The necessary condition that solutions (4.1) be critical at load level A is the existence of a
solution of

12(1- A)"'2 - 2Du2"'1- 2Dul"'2 = 0,

"'1
2 +"'l:¢ O.

Solution of eqns (4.1) and (4.4) is assumed in the form

u =(::) =E(alfPl + a2fP2) + O(E
2
),

A=1+ AlE + O(E 2
),

II- = E211-z+ O(E3),

'" = (~) = (tlfPl + t2fPZ) + O(E),

with

aI2+al= 1,

tI2+tl= 1,

(4.4a)

(4.4b)

(4.4c)

(4.Sa)

(4.Sb)

(4.Sc)

(4.5d)

(4.6a)

(4.6b)

Substitution of the form (4.5) and (4.6) into the original equation leads to the following
lowest order equations

(4.7a)

(4.7b)

With the constraint (4.6), these equations have a one parameter family of solutions with al
in the interval [- 1, 1]. Of interest is the so-called imperfection sensitivity coefficient
(A I/'V(II-z» , since an elimination of E in eqns (4.Sb, c) yields

(4.8)

Thus, the greater this coefficient, the larger is the decrease in the instability loads for small
imperfections. This coefficient is plotted in Fig. 1 against It. the component of the imperfection
in the mode fP.. which is the symmetric mode[l]. In[l] it was concluded that the imperfection in
the asymmetric mode (/1 =0; /2 =1) is more catastrophic than the one in the symmetric mode.
From Fig. 1 it can be seen that most catastrophic iinperfection is a combination of the two, and
in that case the imperfection sensitivity coefficient is about one and one-quarter times larger
than in the case of pure asymmetric bifurcation.

The equations corresponding to eqns (4.1) and (4.4) for three mode solutions are, for
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po... 1. Two mode illterllI:tion ill imperfection sensitivity of externally pmsurized spberical sbell.

equilibrium(I]

and for transition to instability

".(1- A) - 1>11%"3 =",I.
,,%(1 - A) - 1>11311. =",12

,,~I- A) - Du'''2 =",13

"'.(1- A) - D("2tf13 + t/l:tll3) = 0

l/r:t(1- A) - D("3.1 + 1/13"1) =0

1/13(1- A) - D(".!/I:t + "'1"2) = 0

"'1%+!/I:t%+4fl'fl.o.

(4.9a-c)

(4.10a-d)

Here, of course, the subscripts in " and '" refer to bifurcation modes which are difterent
from the ones for the two mode solution. The lowest order perturbation equations are

(4.11)

(4.12)

(4.13)

These equations have a two-parameter family of solutions with ClI in (-I. I] and Cl2 in
(-V(1- Clh +V(l- CI.~J. For a pven (a" Cl2. Cl3). eqn (4.12) is an eipavahle problelllleadiBa
to the cubic equation

(4.14)

Thus the calculation proceeds in the manner already described: for a given (CI" Cl2. Cl3) the
values of A. are obtained from eqn (4.14) and for each of these "'2 and (ft,f:t,!3) are obtained
from eqn (4.11). The results of these calculations are presented in Fig. 2 where A.2/"'2D is
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+1

Fig. 2. Three mode interaction.in imperfection sensitivity of externally pressurized spherical shell.
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plotted against a2 with al as a parameter. The solutions are symmetric about the lines "2 =0
and "I =: O. Of course only the highest branch of these curves is important for a given a2, since
it corresponds to the maximum decrease in the buckling load. From these curves it can also be
concluded that the maximum imperfection sensitivity occurs for

(4.15)

(AI)

although this maximum (AI2/P.2D=<4.5) is less than the maximum in the two mode case
(Al/P.2D =-7.5). However. it is of some interest to note that the condition (4.15) leads to a
polygonal deflection pattern which has sometimes been experimentally observed.

5. CONCLUSION

The theory developed in the precediq sections is an application and extension of the basic
ideas of KeBer[S. 6]. It is therefore possible to make it more rigorous in an appropriate function
space setting although no such attempt has been made here. From application point of view this
development is quite adequate and can be used for other problems in which the bifurcation
point is degenerate.

It is of some interest to note that the work presented here faBs under the category of what
has now come to be known as catastrophe theory. Relationship between this general theory of
catastrophic phenomena and structural stability has been studied recently by Thompson and
Hunt[7]. However. in contradistinction to the qualitative nature of the study of the two mode
interaction in[7], the method given here can be used, in principle, for obtaining quantitative
results for more general cases.
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APPENDIX
The choice of the leading term in the expansion for II- is indicated by the following considerations. Assume

II- '" ~I+ 0(£2)

and same expansion as in eqn (3.3) for other quantities. If this expansion is substituted in eqn (3.1) and the coefficient of £

is set to zero, the following equation is obtained:

(Al)
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The solvability condition for eqn (Al) is

(A3)

Thus "" is nonzero only when the imperfection is ortboIonai to all the bucldiDa modes. Even if this condition is satisfied. it
10ads to the result

(A4)

so tbat the struetllre is not biIbIY imperfectioa selllitive in tbat IIDII1 imperfections do Dot 1eId to 1IrJe decrease in the
buckIiq !old. 11&us for iaperfectioD sellIifMty caIcaIIIiou cue occurs wbeD tile imperfectioa is not
ordloIonal to aD tile buckliq modes. III such a case "'1 is zero and tile term in tile explBion of Po is O(f~ as
IIIUlIIed in eqll (3.3).


