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Abstract—A perturbation method is presented for the analysis of postbuckling behavior and imperfection
sensitivity of elastic structures which have more than one buckling mode. The method is exemplified by
analyzing a complete spherical shell under external hydrostatic pressure. For this analysis, use is made of
two- and three-mode models of the shell derived earlier from the shallow shell equations.

1. INTRODUCTION
In recent years there has been some interest in the analysis of conservative elastic systems
whose loss of stability is associated with the existence of more than one buckling mode at the
lowest critical point on the fundamental path. Not only can the multiplicity of buckling modes
arise naturally in a problem, the coincidence of the two lowest buckling loads may sometimes
be used as the optimization criterion in structural design. Traditionally, the general procedure
for analyzing the imperfection sensitivity of such structures consists of two steps, as, for
example, in Hutchinson[1]. Firstly, a reduced set of equilibrium equations in terms of the
amplitude of the buckling modes is obtained by using the Koiter’s method[2]. The equilibrium
path of the structure is then calculated by solving these nonlinear equations. Once the
equilibrium path is known it is a simple matter to calculate a limit point or a bifurcation point.

In the following presentation a somewhat different approach is used. Its distinguishing
feature is that the equations governing the equilibrium and the transition to instability are
solved simultaneously to obtain the critical load of the imperfect structure. Since it is usually
sufficient to calculate only the instability load for a given imperfection and the knowledge of the
equilibrium path of the imperfect structure is not, in itself, very important, the present method
has an obvious advantage.

The notation used in the development is the one introduced by Koiter[2] because of its
compactness and applicability to both continuous and discrete systems. Even the reduced set of
equilibrium equations derived by Koiter's method can be effectively treated by using the
approach outlined here. In fact, the examples that have been chosen to illustrate the method—
two and three-mode models of externally pressurized spherical shells—are the results of
applying Koiter’s method to the continuum problem.

For the sake of completeness a perturbation method to calculate the equilibrium paths of the
perfect structure is also presented. This formulation is slightly different from.the ones currently
used, e.g.[3].

In the sequel it is constantly required to use the solvability conditions for a singular set of
equations. Let the set of equations

Py(w,8w)=0 (1.1)
have r nontrivial solutions ¢; i.e.
Pu(¢i, w)=0, i=1,...,r. (1.2)
Then the nonhomogeneous set of equations corresponding to (1.1),

Py(z, 8w) = R(6w) (1.3)
937
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has a solution if and only if
R(d)=0, i=1,...,r (1.4)
Once the condition (1.4) is satisfied eqn (1.3) can be solved cither by using a generalized inverse

of a singular matrix in case of discrete systems or by the use of generalized Green’s matrix for
continuum probiems.

2. PERTURBATION METHOD FOR MULTIPLE
BIFURCATION-POSTBUCKLING ANALYSIS
The equilibrium equations are assumed in the form

8P (u) = Py(u, 81) + (A ~ Ag)Pis(u, 8u) + (A = Ao)*Piy(u, 8u) - - - + Pyy(u, Su)
+(A = 9)Ph(u, Su)+- - - + Pyy(u, 8u)+- - - =0. vR))
It is assumed that there is a bifurcation point at load level A, with r bifurcation modes,

orthonormalized with respect to a positive definite quadratic form, that is, with 8; denoting the
Kronecker delta,

Twlenp) =8y iji=1,r. 2.2)

The bifurcating branches from load level A, are expanded in the form

u=ev,+ev+en;..., (2.3a)
A=Aoter +€%,. .., (2.3b)
with
v=- ,E:l 4Pp (2.42)
g al=1, (2.4b)
Tui(vy, v5) = 8y, (2.4c)

On substituting the expansion (2.3) into eqn (2.1) and equating the same powers of ¢ a
sequence of linear problems is obtained:

O(e) Pu (,.2, aws 8u) =0, @.53)
O(€®) Py(vy, du)+ MPh(jEl awpp 8") + Pz|(’zr apy, 814) =0, (2.5b)
- -]

O(€’)  Pu(vs, 8u)+ Ay[Piy(vy, 8w) + A, PYy(vy, 8u)] 4+ AP ii(vy, Su)
+ Pui(vy, va, 8u) + A1P3(v1, 8u) + Pyy(v,, Su) = 0. (2.5¢)

The first of these is satisfied since ¢;’s are the bifurcation modes. The condition that eqn
(2.5b) be solvable for v, leads to a set of nonlinear algebraic equations

AP h(jf{ a%pp ‘Pl) + Py (z apj, ¢i) =0, (2.6)

=1
Defining the matrices

A; = Pules @1 @7
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AM @)= z:t a Pl ok @), 2.8)

the eqn (2.6) can be written as
AMAa+ Ml{a)a =0, 2.9)
with the constraint (2.4b)
aa=1 (2.10)
in terms of the vector a” with components (a;, a3, . .., a,). It is assumed that the matrix A is
nonsingular. In that case and if M1(a) is not identically zero, the set (4.9)+(4.10) will have s
solutions denoted by

a Al I=1,...,s. (2.11)

For each of these branches solution of eqn (2.5b) is of the form

v =5 + 2‘ B'es 2.12
"
where 7, is the unique solution of
Pu(5y, 8u)+ A il(z ale; 5“) + Py, (E a/p; 5“) (2.13a)
j=1 j=1
T,;(b';’,¢,~)=0; j=1,...,r; I=1,...,S. (213b)

Using the condition (2.4c) with j =2, one also gets
2, Bla/ =0. @.14)
j=1

Equation (2.12) is now substituted into the condition that eqn (2.5¢) be solvable for v; for each
of the branches. With the definition

¥ = ALPPH(v, @)+ APL(v, @) + Py(v), )
+ AP\, @) + Pini(vy’, 52, @), (2.152)
7 = Pii(v/’, @), (2.15b)
this solvability condition becomes
MA+2MUa)B +AL,7 +9' =0. (2.16)

Equations (2.16) and (2.14) are (r + 1) linear equations for the r dimensional vector 8’ and
scalar A, thus

e -

Similar linear equations are obtained in calculating higher order terms; thus it is required that
{r+ 1) (r+1) matrix in eqn (2.17) be nonsingular.

This completes the basic procedure for the analysis of postbuckling behavior which could,
in principle, be carried to any order. If Ml(a)=0, eqn (2.9) yields A, =0 and the vector a
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undetermined. However the third order equation yields a cubic set of equations of the form

AAa + M2(a)a =0, (2.18a)

aTa=1. (2.18b)

Thus the analysis essentially involves solving a set of nonlinear algebraic equations for
obtaining the lowest order term in the perturbation expansion. This establishes the number of

branches passing through the bifurcation point. One then proceeds along each of these branches
and only linear analysis is required for obtaining higher order terms.

3. PERTURBATION METHOD FOR MULTIPLE
BIFURCATION—IMPERFECTION SENSITIVITY

The system described by the equilibrium eqns (2.1) is now assumed to have an imperfection.
The equilibrium eqns (2.1) are thus modified to
8P (u) = Pyy(u, 84) + (A — AQ)P}y(, ) + (A ~ AP P{i(u, But) + Py(ut, 8u) + (A — A)P (i, Sus)
+ P3y(u, 6u) + u{Qy(8u) + (A — Ao)Qi(8u) + Qui(u, 8u)] = 0. (3.1
Rather than try to solve eqn (3.1) for each u and then obtain the instability loads—which is
the essence of Koiter's method—attention is restricted in the following to solve eqn (3.1)
simultaneously with the following eqn (3.2), which is the necessary condition that the load level
A correspond to a critical point on the equilibrium path. Thus one has
82P() = Piy(W, 8u) + (A ~ A)P (¥, 8u) + (A — Aol Pi(W, 8u) + Pryy(u, ¥, 8u)
+ (A = AP 1, ¢, 8u) + Payy(u, ¥, Su) + n[Qu(¥, 8u)] =0, (3.2a)
Tu(é, ¥) # 0. (3.2b)

Solution of eqns (3.1), (3.2) is expanded in the form (see Appendix)

u=ev,+€v+---,
VY=ot +- -,
A=A+ e+, 3.3)
B=€pgt- -,
Tu(vr, o) = Tulo, ¥) =0; j122,j2=1,

where
n= 2 P,
im]
Y= ;_‘1 & (3.4

Zrﬂlz 32’&2=1.

i=] i=]

Substitution of expansion (3.3) into the eqns (3.1), (3.2) leads to a sequence of linear
problems. As in the last section, the first one is identically satisfied for both eqns (3.1) and (3.2).
The second set is

Pyi(v2, 8u) + A, Piy(vy, 8u) + Py(vy, 8u) + p2,Qi(8u) =0, (3.53)

Pui(¥, 8u) + A, P{1(sbo, 8u) + Pyyi(vy, tho, Su) = 0. (3.5b)



Mode interaction in postbuckling behavior and imperfection sensitivity 941

The condition that these must be solvable for v, and ¢, leads to a set of algebraic equations

MP h(g apis ¢;) + le(g amw; ¢1) + u2Q:i(e)) =0, (3.6a)
NPi(3, 60 0) + Pus(3 00 3, b0 0)) =0, (3.6b)

where the representation (3.4a), (3.4b) has also been used. Using the matrix notation of the last
section, this set can be written in the convenient form

MAa+ Ml(@)a+pf =0, {;= Qi(e)), (3.7a)
MAE+2M1(a)E =0, (3.7)

and from eqn (3.4), vectors a and £, with components «; and § respectively, also satisfy
aTa=¢T¢=1. (3.8a,b)

Being nonlinear, it is difficult to solve these equations directly for a given {. In the following
a method for obtaining these solutions is presented.

Usually it is of importance to determine the worst case, i.e. for a given magnitude of the
vector {, the combination of the various components {; which produces the maximum
deterioration in the buckling load is required. Without any loss of generality the magnitude can
be taken to be unity. Thus defining a vector

{=nat, (3.92)
so that
pa= VI, (3.9)
the eqn (3.7a) transforms to
MAa+Mi(a)a+{=0. (3.10)

The problems (3.7), (3.8) are now equivalent to eqns (3.7b), (3.8) and (3.10).
A class of solutions to this modified problem is at once obvious, thus (with subscript u
distinguishing the solution for the imperfect case from the perfect one):

A, =24, (3.11a)
& =a), (3.11b)
@)= ay, (3.11c)
{1 = -l Ae)’ (no sum). (3.11d)

That these are indeed the solutions can be verified by direct substitution and using the fact
that the quantities A, and ;' defined by eqn (2.11) satisfy the eqns (2.9).

Another way of generating the solutions is as follows: first a unit vector @ = & is assumed.
The vector £ and A; can obtained by solving the eigenvalue problem

Ax+ yM1(a)x =0, (3.12a)
xTx=1. (3.12b)

Since the matrices A and M1(a) are real and symmetric, the eigenvalues are real. Hence
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corresponding to this &, from eqns (3.7b) and (3.10), the solution is

A=2lx, (3.13a)
E=x, (3.13b)
I=-[hAé& + Ml(@)a). (3.13¢)

Thus, in principle, a continuum of solutions can be generated and from these the im-
perfection that leads to the maximum decrease in the buckling load can be determined.

It must be emphasized here that the potential energy formulation has been used here only
for notational convenience—this perturbation method can be applied to all self adjoint boun-
dary value problems and with a slight modification (i.e. using the null vector of the adjoint
problem in the solvability condition) to non-self adjoint problems also.

In case the matrix M1(a) is identically zero, this analysis yields A, = u, = 0. Hence higher
order expansion has to be used. This will yield equations of the form

A.zAa + M2(a)a + #3{ = 0, (3. 148)
AAE+3IMAa)E=0. (3.14b)

Again, a procedure similar to the one described above can be used for solution of these
equations.

For the subsequent set of linear equations for higher order terms to be soivable a condition
analogous to eqn (2.17) has to be satisfied. Such a condition can be obtained by taking the
derivative of the left hand side of eqns (3.7), (3.8) with respect to the quantities a, £, A and u,
and requiring that the matrix so obtained be nonsingular. Thus the (27 +2) X (2r + 2) matrix

MA +2M1(a) 0 Aa ¢
IM1(E) MA +2M1(a) At 0|
2aT 0 0 0
0 2¢7 0 o0

evaluated at the solution of eqns (3.7) and (3.8) must be nonsingular for the assumed
perturbation expansion to be valid.

4. AN EXAMPLE OF DEGENERATE BIFURCATION—THE
EXTERNALLY PRESSURIZED SPHERICAL SHELL

To illustrate the use of the perturbation method for case of degenerate bifurcation, the
imperfection sensitivity of an externally pressurized shell has been analyzed. The continuum
model—for example, the shallow shell equations used by Hutchinson[1}-—is characterized by
the existence of large number of modes associated with the bifurcation point. The problem
becomes tractable if one imposes the requirement that only a finite number of modes participate
in the initial postbuckling regime. This could be done in a number of seemingly different ways,
as in Hutchinson{1] or Reissner[4]. For the sake of brevity it is not attempted here to proceed
from the shallow shell equations and solution is obtained using some results of Hutchinson
whose work can be referred to for details.

If a two-mode solution is assumed, the governing equations in terms of nondimensional
variables are

uy - Ay — Dus® = auf,, @.1a)

(1= Ay~ 2Duyiy =2 Auf, (4.1b)

where fT =(f,, f,) is a unit vector. The quantities A and D are defined in terms of critical
pressure p. and Poissons ratio », thus,

A = pfp,, (4.2a)
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=2 V(1 -
D 32\/(3(1 »2). (4.2b)

The bifurcation point is at A= 1 with the corresponding bifurcation modes
e =[1,00; " =[0,1]. (4.3a,b)

The necessary condition that solutions (4.1) be critical at load level A is the existence of a
solution of

¥ — A — 2Ddu = 0, (4.4a)
3 (1= )~ 2Dusdy = 2Dy =0, (4.4b)
U+l #0. (4.4c)

Solution of eqns (4.1) and (4.4) is assumed in the form

u= (:;) = e(@1p: + @20) + O(eY), (4.52)
A=1+Ae+ O(Ez), (4.5b)
Bn= ezyz+ O(es), (4.5¢)
b= (1) = @i+ w0+ 006, @sd)
with
al+alt=1, (4.6a)
E1+&=1, (4.6b)

Substitution of the form (4.5) and (4.6) into the original equation leads to the following
lowest order equations

o R o e | b R EA) @70
-y (el pe ZD][E]=0 @)

With the constraint (4.6), these equations have a one parameter family of solutions with a;,
in the interval [-1,1]. Of interest is the so-called imperfection sensitivity coefficient
(A/V(n2)), since an elimination of € in eqns (4.5b, c) yields

(1-2)= (‘7‘:) ). 4.8)

Thus, the greater this coefficient, the larger is the decrease in the instability loads for small
imperfections. This coefficient is plotted in Fig. 1 against f;, the component of the imperfection
in the mode ¢@;, which is the symmetric mode[1]. In[1] it was concluded that the imperfection in
the asymmetric mode (f; = 0; f, = 1) is more catastrophic than the one in the symmetric mode.
From Fig. 1 it can be seen that most catastrophic imperfection is a combination of the two, and
in that case the imperfection sensitivity coefficient is about one and one-quarter times larger
than in the case of pure asymmetric bifurcation.

The equations corresponding to eqns (4.1) and (4.4) for three mode solutions are, for
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fl
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Fig. 1. Two mode interaction in imperfection sensitivity of externally pressurized spherical sheil.
equilibrium[1]
uy(1 - 1)~ Duyus = uf,
ux1-A) - Dusuy = pf, (4.92—c)
us(1-A) = Duyutz = pfs
and for transition to instability

(1 =)= D(uss + dau3) =0

¥(1 - A)— D(usdps + i) = 0
(4.10a-d)
¥(1-2)— D+ hitz) =0

i+t #0.

Here, of course, the subscripts in &4 and ¢ refer to bifurcation modes which are different
from the ones for the two mode solution. The lowest order perturbation equations are

1 00 ¢|- D 0 ay az a |
“A0 1 Oflay B Rl 0 o |l @ |=p fo 4.11)
0 01 as | a a 0 as 3
100 —0 asz aj f.
[A.\:O 1 o}p a 0 ] &1=0 4.12)
0 01 L@y a 0 §3

a12+ a22+ a;z = f|2+ £22+ ggz = f12+f22+f32 =1, (4.13)

These equations have a two-parameter family of solutions with «, in {—1,1] and a3 in
(- V(1~-a®), + V(1-a;?). For a given (a;, az, as), eqn (4.12) is an eigenvalue problem leading
to the cubic equation

A,’-:\,D’+2D’a|aga;= 0. (4.14)
Thus the calculation proceeds in the manner already described: for a given (a;, a3, a3) the

values of A, are obtained from eqn (4.14) and for each of these u, and (fy, fi, f3) are obtained
from eqn (4.11). The results of these calculations are presented in Fig. 2 where A,%/u,D is
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Fig. 2. Three mode interaction in imperfection sensitivity of externally pressurized spherical shell,

plotted against a, with «, as a parameter. The solutions are symmetric about the lines a; =0
and a, = 0. Of course only the highest branch of these curves is important for a given a5, since
it corresponds to the maximum decrease in the buckling load. From these curves it can also be
concluded that the maximum imperfection sensitivity occurs for

lay| = |adf = |as| = Vl(?) (4.15)

although this maximum (A;}/u.D =4.5) is less than the maximum in the two mode case
(A*lu2D =1.5). However, it is of some interest to note that the condition (4.15) leads to a
polygonal deflection pattern which has sometimes been experimentally observed.

5. CONCLUSION

The theory developed in the preceding sections is an application and extension of the basic
ideas of Keller[$, 6]. It is therefore possible to make it more rigorous in an appropriate function
space setting although no such attempt has been made here. From application point of view this
development is quite adequate and can be used for other problems in which the bifurcation
point is degenerate.

It is of some interest to note that the work presented here falls under the category of what
has now come to be known as catastrophe theory. Relationship between this general theory of
catastrophic phenomena and structural stability has been studied recently by Thompson and
Hunt[7]. However, in contradistinction to the qualitative nature of the study of the two mode
interaction in[7], the method given here can be used, in principle, for obtaining quantitative
results for more general cases.
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APPENDIX
The choice of the leading term in the expansion for u is indicated by the following considerations. Assume

B =gy + Ole?) (A1)

and same expansion as in eqn (3.3) for other quantities. If this expansion is substituted in eqn (3.1) and the coeflicient of €
is set to zero, the following equation is obtained:

Pyy(vy, )+ 5, Qy(8u) = 0. (A2)

§8 Vol. 13, No. 10F
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The solvability condition for eqn (A2) is
wQile)=0 i=1,...r (A3)

Thus g, is nonzero only when the imperfection is orthogonal to all the buckling modes. Even if this condition is satisfied, it
leads to the result

(A=A = Op) (Ad)

so that the structure is not highly imperfection sensitive in that small imperfections do ot lead to large decrease in the
buckling load. Thus for imperfection sensitivity calculations more interesting case occurs when the imperfection is not
orthogonal to all the buckling modes. In such & case g, is zero and the leading term in the expansion of u is O(¢?) as
assumed in eqn (3.3).



